数学是研究数量、结构、变化、空间以及信息等概念的一门学科。那么,以下是小编为大家带来的2024年高考数学复习知识点总结,欢迎参阅呀!
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a2,V=a3
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台
r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体
R-环体半径D-环体直径r-环体截面半径d-环体截面直径
V=2π2Rr2=π2Dd2/4
17、桶状体
D-桶腹直径d-桶底直径h-桶高
V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
一、查缺补漏,主攻薄弱
请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。
别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。
因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。
二、反思错题
不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。
三、克服无谓失分
如何避免审题出错?
原因:看太快。
应对策略:
1.默读法;2.重点字词圈点勾画法;3.审图法。
如何降低计算失误?
表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。
应对策略:
1.不要为了赶时间而跳步计算;
2.宁可笔算,少用口算,更不要再抱着计算器;
3.对平时易算错的题型,可以验算一遍。
四、关注几个重点问题
1.新定义题型、非常规题型、存在性问题。
2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。
1、预习
预期常常由于 “没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。
2、学会听课
听分析、听思路、听应用,关键内容一字不漏,注意记录。
3、做好错题本
每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。
4、用好课外书
正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。
5、注重数学思维方法的培养
要注意数学思想和方法的指导,站得高,才能看得远。
一、读一读。预习时要认真,要逐字逐词逐句的阅读,用笔把重点画出来,重点加以理解.遇到自己解决不了的问题,作出记号,教师讲解时作为听课的重点.
二、想一想。对预习中感到困难的问题要先思考.如果是基础问题,可以用以前的知识看看能不能弄通.如果是理解上的问题,可以记下来课上认真听讲,通过积极思考去解决.这样有利于提高对知识的理解,养成学习数学的良好思维习惯。
三、说一说。预习时可能感到认识模糊,可以与父母或同学进行讨论,在同学们的合作交流与探讨中找到正确的答案.这样即增加了学生探求新课的兴趣,有可以弄懂数学知识的实际用法,对知识有个准确的概念。
四、写一写。写一写在课前预习中也是很有必要的,预习时要适当做学习笔记,主要包括看书时的初步体会和心得,读明白了的问题的理解,对疑难问题的记录和思考等。
五、做一做。预习应用题,可以用画线段的方法帮助理解数量间的关系,弄清已知条件和所求问题,找到解题的思路.对于一些有关图形方面的问题,可以在预习中动手操作,剪剪拼拼,增加感性认识。
六、补一补。数学课新旧知识间往往存在紧密的联系,预习时如发现学习过的要领有不清楚的地方,一定要在预习时弄明白,并对旧的知识加以巩固和记忆,同时为学习新的知识打下坚实的基础。
七、练一练。往往每课时的例题都是很典型的,预习时应把例题都做一遍,加深领悟的能力.如果做题时出现错误,要想想错在哪,为什么错,怎么改错.如果仍是找不到错误的根源,可在听课时重点听,逐步领会。